
Specifying the Semantics of Machine Instructions

�

Cristina Cifuentes Shane Sendall

Department of Computer Science and Electrical Engineering

University of Queensland

Brisbane Qld 4072, Australia

fcristina,shanesg@csee.uq.edu.au

Technical Report 422

December 1997

Abstract

Computer architecture manuals describe the instruction set of the

machine and the semantics of those instructions by a combination of

natural language and ISP (Instruction Set Processor) descriptions. The

syntax of the instructions in assembly is well de�ned in the form of

tables in the manual. However, the semantics is not so well speci�ed

and descriptions vary widely from one manual to another.

When developing a retargetable binary translator, as much as pos-

sible needs to be speci�ed in order to automatically generate code from

speci�cations, hence separating machine-independent issues from the

manual coding stage. The speci�cation of the semantics of machine in-

structions is one such task, with the aim of generating suitable code for

an intermediate representation that is to be used during the analysis

stage.

We describe the design process used to develop a semantic speci�ca-

tion language, SSL, to integrate into a retargetable binary translation

framework. The techniques described herein are suitable not just to

binary translators but also to machine-code manipulation tools such

as optimizing compilers, binary pro�lers, instrumentors, and binary

debuggers.

Keywords: binary translation, retargetable, formal speci�cation,

CISC, RISC.

�

This work is sponsored by the Australian Research Council under grant No.

A49702762 and The University of Queensland.

1 Introduction

Binary translation is a form of re-engineering of machine code, which follows

the taxonomy of Chikovsky and Cross [1]. Binary translation allows the

running of code compiled for source platform M

s

on destination platform

M

d

. Unlike an interpreter or emulator, a binary translator makes it possible

to approach the speed of native code on machine M

d

. Translated code may

run more slowly than native code because low-level properties of machine M

s

must often be modeled on machine M

d

. For example, the Digital Freeport

Express translator [3] simulates the byte order of SPARC, and the FX!32

translator [14, 5] simulates the calling sequence of the source x86 machine,

even though neither of these is native to the target Alpha machine.

From a simplistic point of view, binary translation requires the trans-

lation of sequences of machine instructions from one machine to another.

Although it is not very di�cult to translate some sequences of machine in-

structions from one machine to another, other considerations make the task

very di�cult in practice. For example, binary code often mixes data and

instructions in the same address space in a way that cannot be distinguished

given the same representation for data and code in Von Neumann machines.

This problem is exacerbated with indirect or indexed jumps, where the tar-

get value of the jump is known at runtime, but sometimes hard to determine

statically, at translation time. Further, some of the older operating systems

did not provide systems programmers with an ABI (application binary inter-

face) to low-level system calls, hence allowing application writers to directly

access the hardware. All of these problems and more are common to binary-

code manipulation tools such as disassemblers, pro�lers, instrumentors and

decompilers. Nevertheless, for binary translation purposes, this does not

mean that the problem cannot be solved at all. In fact, given that the

translated binary �le will need to be executed, any information that could

not be decoded statically will be available dynamically, hence allowing for

runtime translation or interpretation of the binary code, at the expense of

user time.

Retargetable Binary Translation

Current binary translators are driven by commercial interests and are fairly

machine-dependent, normally limited to one or two platforms. In contrast,

we are developing a retargetable binary translation framework which will

aid in the speci�cation and automation of the machine-dependent parts

of the translation, therefore liberating programmers from time-consuming

2

and error-prone jobs such as decoding and encoding machine instructions

and their semantics, and allowing them to work on more interesting prob-

lems such as machine-independent analyses. Retargetability allows the con-

struction of machine-independent tools by formal speci�cations of machine-

dependent aspects of a problem and allowing the portability of the tools by

reuse of speci�cations for a di�erent machine.

The speci�cation of the syntax of machine instructions and its associated

assembly mnemonics has been made possible through the SLED (Speci�ca-

tion Language for Encoding and Decoding) language [10] implemented by

the New Jersey Machine-Code (NJMC) toolkit [9]. The toolkit allows users

to write a speci�cation for the syntax of machine instructions for a particular

machine, and decode or encode to that syntax based on extra language state-

ments available in the toolkit. In this way, a decoder of machine instructions

can be fully speci�ed and the user need only write the speci�cation for a

new machine instruction set (or reuse an existing one) and determine the

appropriate stream of bytes to decode.

For binary translation analysis purposes, the semantics of the machine

instructions decoded from a binary executable �le is needed. Given that

most machines perform similar operations such as loads, stores and branches,

but have a slightly di�erent semantic meaning attached to their machine

instructions, the semantic meaning of such instructions should be able to be

speci�ed.

This paper describes the development process in the speci�cation of se-

mantics of machine instructions for a CISC and RISC machine. The paper

is structured in the following way: Section 2 described previous work in

the area of specifying semantics of machine instructions, Section 3 describes

the formal speci�cation of semantics via the Object-Z [4] language, Sec-

tion 4 describes the informal re�nement of the Object-Z speci�cations into

a Semantic Speci�cation Language called SSL; this language is described

in Section 5. Section 6 provides examples on how the SPARC and 80286

architectures were modelled and Section 7 provides a discussion on the use

of such speci�cations. The paper concludes with conclusions.

2 Previous Work

There has been little work done in the area of specifying the semantics of

machine instructions as few tools deal with them in a retargetable way. Most

tools embed the semantics of the particular instruction set they are dealing

with into the source code; retargeting of such tools to other platforms is

3

hard and time consuming due to the inherent dependency on the machine

instruction set it was written for.

Computer architecture manuals describe the syntax and semantics of

machine instructions by a combination of natural language and ISP (Instruc-

tion Set Processor notation) descriptions, for example see Intel's Pentium

manual [6] and SPARC's V8 manual [12]. The syntax of the instructions

in assembly and its associated binary or machine code is well de�ned in

the manual in the form of tables. ISP is a high-level notation that resem-

bles a structured programming language, with constructs for conditionals

and iteration. The notation itself does not use a standard language, hence

di�erent manuals specify pseudo-code for the semantics in a di�erent way.

This makes the notation an ambiguous notation for speci�cation purposes.

Further, low-level machine dependencies such as memory alignment are also

speci�ed in ISP.

EEL, an executable editing library [7] which aids users instrument exe-

cutable programs, developed a simple semantic speci�cation language based

on the SLED language of the New Jersey Machine Code (NJMC) toolkit [9,

10]. EEL extends NJMC's speci�cation constructs with a semantic con-

struct, sem, which provides a simple attribute description of the semantic of

an instruction (or a set of instructions). However, this language only models

basic semantics of an instruction and does not provide a way of specifying

the full semantics of the instruction, such as modifying condition codes, and

machine-dependencies such as register windows on SPARC. The language

has been used for writing pro�ling tools.

Our approach di�ers from previous work by allowing a user to specify

the semantics of a set of machine instructions and using that speci�cation

for generating an intermediate language which is supported in a retargetable

binary translation environment.

3 Specifying Semantics of Machine Instructions in

Object-Z

The Object-Z speci�cation language is an object-oriented extension to the Z

formal speci�cation language [13] and was developed speci�cally to facilitate

speci�cation in an object-oriented style. A Z speci�cation typically models

a system by specifying a number of state and operation schemas. A state

schema groups together variables de�ning a part of the state of the system,

and de�nes invariant relationships held between variables. An operation

schema, based on the state schema, de�nes the way its functionality changes

4

the system's state. Object-Z adds a class structure that encapsulates a

single state schema with related operations. Each class can be examined

and understood in isolation, and complex classes can be speci�ed in terms

of simpler classes through object-oriented structuring techniques. A result

of using Object-Z is that system functionality and object-oriented design

can be captured within one notation. A full description of the language can

be found in Duke and Rose [4].

3.1 80286 Environment

The 80286 machine is a 16-bit segmented memory CISC architecture. It

contains �fteen 16-bit registers that can be grouped into the following cate-

gories: general registers, segment registers, and status and control registers.

Flag information is contained in a register which stores 11
ags. An 80286

instruction consists of two distinct pieces of information: an opcode specify-

ing the operation, and zero, one, or two operands identifying the object(s)

to be manipulated by the instruction. Instructions can reference operands

by means of eight addressing modes: two for register operands, and six for

memory operands. Immediate operands are supplied as part of the instruc-

tion itself. Objects in memory are accessed by means of a 32-bit address

pointer.

The Object-Z environment declaration of the 80286 architecture is shown

in a simpli�ed form in Figure 1; it contains instances of all registers,
ags and

memory required by the 80286 architecture. Registers and
ags are modelled

independently, and memory is modelled as a sequence of Memories objects

(an object which ensures the consistency of values stored in a byte memory

location). 16-bit sizes are enforced on all word registers. The registers,

ags, and memory are initialised to zero. Repeat and Skip have also been

included in the environment, they act as control variables used for the repeat

instructions.

3.2 SPARC Environment

SPARC is a 32-bit linear address space RISC architecture. All instructions

are 32-bits wide and are aligned on 32-bit boundaries in memory. There are

only three general instruction formats and they feature uniform placement

of opcode and register address �elds. Only load and store instructions access

memory. It supports three addressing modes, two for memory addressing

and one for register or immediate operands. Most instructions operate on

two register operands, and place the result in a third register. At any one

5

286Env

AX ;BX ;CX ;SP ;CS ;PC ; ::: : Registers

OF ;ZF ;CF ; ::: : Flags

memory : seqMemories

Repeat; Skip : B

�

FLAGS : N

AX :size = 16BITS ^ BX :size = 16BITS

CX :size = 16BITS ^ SP :size = 16BITS

CS :size = 16BITS ^ PC :size = 16BITS

:::

:::

INIT

AX :init ^ BX :init ^ CX :init

SP :init ^ CS :init ^ PC :init

CF :init ^ OF :init ^ ZF :init

:::

:::

8m : ranmemory � m :init

Repeat = false

Skip = false

::

::

Figure 1: The Object-Z speci�cation of the 80286 architecture (simpli�ed).

instance, a program sees 8 global integer registers plus a 24-register window

into a larger register store.

The speci�cation of the SPARC environment is shown in Figure 2. It

contains instances of all registers,
ags, and memory required by the SPARC

architecture. Registers and
ags are modelled independently, and memory is

modelled as a sequence ofMemories objects. Register windows are modelled

simplistically with a current context window pointing to a window of the

total group of registers. The current window is attended to by the cwp

variable. The level of abstraction available to the environment through the

Object-Z language allows the ease of potentially complex semantics implied

by register windows.

3.3 80286 and SPARC Instruction Speci�cations

The level of abstraction possible with SPARC's loads and stores proved to be

quite high compared to the architecture manual's ISP de�nition. The store

(ST) instruction stores a word into a memory location. Figure 3 shows its

Object-Z speci�cation: ST handles addressing modes by allowing a choice

6

SparcEnv

r ;asrw : seqRegisters

%y;%psr ;%tbr ;%fsr ;%wim ;%PC ;%nPC : Registers

N ;Z ;V ;C : Flags

m : seqMemories

cwp : f0::NWINDOWS � 1g

�

%g0; ::%g7;%o0; ::%o7;%l0; ::%l7;%i0; ::%i7;

%fp;%sp : Registers

ins ;outs ; locals ; globals : PRegisters

::

%g0 = %r(0); ::%i7 = %r(31)

f%g0;%g1;%g2;%g3;%g4;%g5;%g6;%g7g = globals

f%o0;%o1;%o2;%o3;%o4;%o5;%o6;%o7g = outs

f%l0;%l1;%l2;%l3;%l4;%l5;%l6;%l7g = locals

f%i0;%i1;%i2;%i3;%i4;%i5;%i6;%i7g = ins

8x : dom r � r(x) = w(x + (16 � cwp:val)

mod(NWINDOWS � 16))

::

INIT

8 i : domw � w(i):init

::

Figure 2: The SPARC environment consists of all the registers,
ags, and memory

instances. Also includes a de�nition of register windows.

dependent on the i �eld of the instruction. The calculated address is then

used as the o�set into memory for the storage of the third operand (rd). Def-

initions of loads and stores are reused where appropriate|in the tradition

of object-orientation.

ST b= [instr? : Instruction; addr : Immediate j

instr? 2 fFormat4; Format5g] �

([instr :i :val = 0] �

addr :UpdateVal [(r(instr :rs1:val):val+

r(instr :rs2:val):val)=newval?]

[]

[instr :i :val = 1] �

addr :UpdateVal [(r(instr :rs1:val):val+

instr :simm13:val)=newval?])

o

9

m(addr :val):UpdateVal [r(instr :rd:val):val=newval?]

Figure 3: Object-Z speci�cation of ST - stores a word into memory.

In contrast, in the 80286 architecture, only a basic notion of address-

ing mode has been applied. This means that �elds and formats have been

7

omitted from the speci�cation, choosing instead to model the instructions

from a black-box point of view, hence allowing only input and output vari-

ables. In the case where there are many addressing modes, the input and

output variables are not strictly constrained to a certain type or size but

rather the precondition describes what the variables cannot be. Therefore

speci�c addressing modes are not supplied. An example of this black-box

abstraction can be seen in Figure 4 in the speci�cation of the add instruc-

tion, ADD , where the input and output variables lsrc?, rsrc?, and dest ! are

not constrained to particular sizes or types but rather the precondition (lines

2 and 3) informs only of the invalid cases. The inclusion of every case in

the speci�cation would greatly increase the size of the speci�cation, and also

reduce its readability. Shown against their assembly derivatives (see Figure

5) of six di�erent addressing modes, it is possible to see why the inclusion of

speci�c cases for each option could produce a large speci�cation document.

ADD b= [dest !; lsrc?; rsrc?; temp : Operand] �

[lsrc? 62 Immediate ^ lsrc? 2Memories

) rsrc? 62Memories ^

lsrc?:size = rsrc?:size ^

dest ! = lsrc? ^

temp:size = TEMP] �

temp:v :UpdateVal[(lsrc?:val+

rsrc?:val)=newval?] ^

dest !:v :UpdateVal[temp:val=newval?]

Figure 4: 80286 ADD instruction { places the addition of its two operands back

into the �rst operand.

ADD CX, DX REGISTER, REGISTER

ADD DI, ALPHA REGISTER, MEMORY

ADD BETA, CL MEMORY, REGISTER

ADD CL, 2 REGISTER, IMMEDIATE

ADD ALPHA, 2 MEMORY, IMMEDIATE

ADD AX, 20 ACCUMULATOR, IMMEDIATE

Figure 5: 80286 ADD assembly instruction combinations { 6 addressing

modes in total.

SPARC uses delay slots in control transfer instructions as a form of

pipelining. Therefore, any instruction that transfers control has the op-

tion of executing a delayed instruction (the next physical instruction in the

stream). The delayed instruction is executed while the branch is taking

8

place. Delayed transfers of control were modelled with the concept of a

Next Program Counter (nPC). The nPC is an environment variable like

the program counter (PC), which stores the next program position rather

than the current one (stored by the PC). An example of a control transfer

instruction, branch if not equal (BNE), is shown in Figure 6. The BNE

instruction takes the branch if the Z (zero)
ag is not set and executes the

delay instruction unconditionally. Since the program counter (PC) is up-

dated before every instruction, the PC is pointing at the delay instruction,

therefore the next program counter (nPC) is set to the branch location (the

o�set disp22). When the Z (zero)
ag is set, the delay instruction is optional

and dependent on the instruction's annul �eld (a). To annul the execution of

the delay instruction, PC is set to the instruction after the delay instruction

(the o�set INSTR SIZE).

BNE b= [instr? : Instruction j instr? 2 fFormat3g] �

[Z :val = 0] � nPC :UpdateVal[(PC :val+

join(instr?:disp22:val;0; 0))=newval?]

[]

[Z :val = 1] �

[instr?:a:val = 1] � PC :UpdateVal[

(PC :val + INSTR SIZE)=newval?]

Figure 6: Object-Z speci�cation of BNE { branches on Z
ag equal to 0.

4 From Object-Z to SSL { A Semantic Speci�ca-

tion Language

The transformation of the Object-Z speci�cations into a simple and parsable

semantic speci�cation language (SSL) was done through an iterative infor-

mal re�nement process. Some di�culties were experienced in the re�nement

process when trying to bridge the high-level speci�cation to a concrete form.

These problems were mainly experienced due to the black-box approach used

to specify addressing modes|these were not explicitly modelled in Object-Z,

instead, an operand name was used. This meant that during the re�nement

to SSL, some addressing modes needed to be checked by refering to the

architecture manual.

The SSL language was developed with integration into the SLED lan-

guage [10, 9] in mind, via a library or template. Hence, an application

writer is able to do syntax decoding of machine instructions using SLED

and NJMC, and perform semantic analysis using SSL and SRD (a Semantic

9

Representation Decoder tool that implements SSL).

The process was iterative as several requirements were sought out of

SSL. These requirements were constantly checked in the new versions of the

language:

� provide a simple and compact notation,

� model the semantics of machine instructions separately or per groups

of instructions,

� model basic transfers of information via registers and memory loca-

tions,

� model complex and basic instructions without introduction of recur-

sion or function calls,

� strictly model sizes of operands, registers and memory accesses,

� provide a universal model for
ags and their interactions via named

registers and macro \functions", and

� model broad environment structure and semantics to handle many

architectures and their idiosyncrasies; in other words expressability.

Out of these requirements, the architecture environment is not yet fully

supported, and is not discussed in this paper.

5 Speci�cation Concepts of SSL

We describe the syntax and semantics of SSL informally, through natural

language and examples. A complete description of the syntax in EBNF form

and a more detailed semantic speci�cation can be found in [11, 2].

SSL allows for the description of the semantics of a list of instructions by

means of statements or register transfers. Most statements are assignment

statements, but there is also support for conditional and
ag statements.

The register transfers for a group of instructions can be grouped via a table.

Individual assignment register transfers allow for a variety of expressions

(arithmetic, bitwise, logical and ternary). The base elements of an expres-

sion are values, and the base elements of an instruction are variables. We

explain each of these in detail in the next sections.

5.1 Variables and Values

A variable can be a register, memory, or parameter to an instruction operand.

A value is the contents of a variable (denoted with the pre�x prime symbol

(')) or a numerical constant. A value can be signed extended by means of

the ! symbol.

10

For example, r[5] is register 5, and 'm[100000]! is the sign-extended

value of the memory location 100000.

5.2 Constants

Constants are names assigned to numerical values that do not change. Con-

stants are commonly used to describe �xed values of a machine, for example,

WORD := 32.

5.3 Expressions

Three groups of expressions are supported: unary, binary and ternary, each

with an expressions as a member. Expressions are thought of as trees, with

the leaves being the values of the expression and the inner nodes being the

operators of the expressions.

Unary expressions include the negation (NOT) of an expression and the

sign extension (!) of an expression.

Binary expressions include arithmetic, bitwise and logical expressions, as

well as bitwise expressions (@). The �rst three types of binary expressions

are commonly found in most programming languages. The latter expression,

bitwise-extraction, is needed to extract bits of a �eld, and hence the top and

bottom bits need to be speci�ed. This expression is derived from the SLED

language. Examples of each of these types of expressions follow:

'r[1] + 'r[5] // arithmetic

'r[1] | 'm[1000] // bitwise

'r[5] or 'r[1] // conditional

'r[5] @ [0:19] // bitwise-extraction

The ternary expression ?: consist of a logical expression, a true-branch

expression, and a false-branch expression. The semantics is as per the C lan-

guage: if the logical expression evaluates to true, the true-branch expression

is evaluated, otherwise the false-branch expression. For example, returning

a boolean based on the contents of register 1 can be speci�ed as:

'r[1] = 0 ? 0 : 1.

Expressions can be casted to another size (in number of bits required).

Casting can upgrade the size of the value of an expression or downgrade

it. Casting is denoted by post�xing the size in brackets. For example,

'r[rs1]f64g casts the value of register rs1 to 64 bits.

Finally, there are two types of expressions that deal with tables. These

expressions will be explained once the concept of table is introduced in Sec-

tion 5.5.1.

11

5.4 Statements

Statements describe transfers of information to/from registers. All transfers

have to be speci�ed; there are no side-e�ects on transfers other than those

described by a statement. Most transfers will be assignments, however, there

is also need for conditional ()) statements and support for condition codes

as we do not want to fully specify these transfers, but merely know if a

change in a condition code could happen or not.

An assignment statement consists of the size of the assignment (in bits),

the variable of the target of the assignment, and an expression describing

the value of the assignment. For example,

32 r[rd] := 'imm22 << 10

assigns 32 bits of the contents of imm22 left-shifted 10 bits to register rd.

A conditional statement consists of a membership logical expression, fol-

lowed by a list of statements. If the logical expression is true, the list of

statements is valid. Membership is denoted by the operator |=. A mem-

bership logical expression tests if a value is a member of a set of numbers

(or ranges of numbers). For example, 'r[rd] |= f2,3g tests if the value of

register rd is either 2 or 3.

The empty statement is denoted by -. This statement is useful when

describing the semantics of the NOP instruction.

Support for Condition Codes

Condition codes are treated as named registers of size 1 bit. Although only 0

or 1 can be assigned to a condition code, assignment statements to condition

codes can be quite complex if fully described. For example, the SPARC V8

manual describes the over
ow of an add instruction which sets the condition

codes as:

V <- (r[rs1]<31> and operand2<31> and

(not result<31>)) or ((not r[rs1]<31>)

and not operand2<31> and result<31>)

Although this expression could be speci�ed in SSL, we do not want to

know how the condition code was set other than it may be changed|this

removes overhead during translation time as an over
ow condition code will

have a similar meaning in all architectures.

Since we are interested in knowing if the value of a condition code may

have been changed, we provide the following two macros:

� update
ags: speci�es the named condition codes that may be changed

by the instruction.

12

For example, the 80286 multiply instruction modi�es all 6 condition

codes; this is speci�ed as:

defineflags(%SF,%ZF,%AF,%PF,%CF,%OF).

� unde�ne
ags: this macro speci�es that the value of all current named

condition codes is unde�ned or unknown. Few machine instructions

produce this e�ect; for example the 80286 divide instruction:

undefineflags().

5.5 Tables

Tables are used for grouping names of instructions alone or pairs of instruc-

tions and operators or expressions. These are useful when describing the

semantics of a group of instructions that behave in a similar way; the group

can be declared in a table and given a name (the name of the table), which is

then used in the speci�cation, as described in the next section (Section 5.6).

Tables of instructions are handy when grouping instructions that come

from the same family, such as the store instructions. On SPARC, there are

store double-word, word, half-word, and byte instructions, both in alternate

or non-alternate storage, for a total of 8 instructions. The semantics of the

store family of instructions is same, the only di�erence is in the size of the

operand. Hence these instructions could be grouped in the STORE table:

[STORE] := {STD, STDA, ST, STA, STH, STHA, STB, STBA}

Instructions that perform an arithmetic or bitwise operation can be

grouped in a table which pairs the instruction name with its operator. In

the following example, we have grouped the add, subtract, add and set con-

dition codes, and subtract and set condition codes, in the 2-dimensional

[ARITH,OP3] table. The name ARITH is used to identify the instruction

names, and the OP3 name is used to identify the operator symbol. The table

is viewed as a 2-dimensional array for usage purposes:

[ARITH, OP3] := { (ADD_, "+"), (SUB_, "-"),

(ADDCC_, "+"), (SUBCC_, "-") }

Finally, the third type of table pairs instructions and expressions. This

is useful when grouping conditional instructions for example, as the condi-

tion of the instruction is dependent on a condition code or a set of condition

codes; i.e. they are based on an expression of condition codes. In the follow-

ing example, the table [JUMPS,COND] is created. The JUMPS name indexes

instruction names, and the COND name indexes expressions associated with

the instructions:

13

[JUMPS,COND] :=

{ (BA_, 1), (BN_,0), (BNE_, ~'%Z), (BE_, '%Z),

(BG_, ~('%Z |('%N ^ '%V))),

(BLE_, '%Z |('%N ^ '%V)), (BGE_, ~('%N ^ '%V)),

(BL_, '%N ^ '%V), (BGU_, ~('%C | '%Z)),

(BLEU_, '%C | '%Z), (BCC_, ~'%C),

(BCS_, '%C), (BPOS_, ~'%N), (BNEG_, '%N),

(BVC_, ~'%V), (BVS_, '%V) }

5.5.1 Tables and Expressions

In Section 5.3 we mentioned that there were two types of expressions that

dealt with tables: the table expression and the table operand. The former

allows users to index the second element of tables that pair instructions and

expressions, by indexing on the expression (i.e. the COND �eld in the previous

example). The latter allows users to index the second element of tables that

pair instructions and operators, by indexing on their operator (i.e. the OP3

�eld in the second to last example above).

The expressions that relate to tables can be used as part of assignment

statements which facilitate the description of the semantics of an instruction.

For example, our earlier addition expression 'r[1] + 'r[5] would be more

generally speci�ed if taken in context of the arguments passed to an addition

instruction: a register rs1, a register or an immediate reg or imm, and the

destination register rd, and speci�ed as an assignment statement:

32 r[rd] := 'r[rs1] + 'reg or imm

When being part of the [ARITH,OP3] table above, the whole set of in-

structions can be speci�ed as follows:

32 r[rd] := 'r[rs1] OP3[idx] 'reg or imm

where idx is an indexed variable into the table (based on the instruction

parsed), and it would be 1 if the ADD instruction were parsed.

In a similar way, we can index in the [JUMPS,COND] table to determine

the condition of a branch instruction. In this case, if the condition is true, the

named register %nPC is set to a displacement from the current PC, otherwise

it is set to the next physical instruction. Note that this is a simpli�cation

of the complete semantics for illustration purposes only:

32 %nPC := ((COND[idx] = 1) ? '%PC + (4 * disp22) : '%PC + 4)

5.6 SSL Instructions

An SSL instruction is the way we describe the semantics for one particular

machine/assembly instruction. An SSL instruction takes the name of the

assembly instruction or a table name as its left-hand-side (LHS) and a list

14

of SSL statements (as per Section 5.4) on its right-hand-side (RHS). The

RHS and LHS are separated by indentation for readability purposes.

The assembly ORcc instruction takes three arguments on SPARC; a regis-

ter and another register or an immediate value, and the destination register.

The input arguments are bitwise-or'd and the result is placed on the desti-

nation register. The 4 condition codes are also updated. This instruction

can be speci�ed as follows:

ORCC rs1,reg_or_imm,rd *32* r[rd] := 'r[rs1] or 'reg_or_imm

defineflags (%N, %Z, %V, %C)

The following example illustrates how to specify the semantics for a

group of arithmetic and bitwise instructions that have been grouped in the

INSTR TABLE table. The LHS speci�es the name of the instruction (i.e. one

of the ones in the table) and the number and names of the parameters. The

RHS speci�es the semantic operation to be performed based on the index of

the instruction in the table.

[INSTR_TABLE, OP1] := { (ADD_,"+"), (AND_,"&"),

(OR_,"|"), (SUB_,"-"), (XOR_,"^") }

INSTR_TABLE[idx] param1 *8* r[1] := 'r[1] OP1[idx] 'param1

6 Modelling of Semantics of CISC and RISC Ma-

chine Instructions using SSL

SSL has been used to model the semantics of machine instructions for a

CISC (Intel's 80286) and a RISC (SPARC) machine. The 80286 was chosen

instead of the Pentium due to its CISC characteristics and the fact that it

is a subset of Pentium, with only 250 instructions as opposed to 500 in the

Pentium. In this section we show extracts of the complete speci�cations for

these machines; the complete specs are available in [11, 2] or from the web

site: http://www.it.uq.edu.au/csm/bintrans.html.

6.1 The Underlying Fetch-Execute Cycle

Underlying any semantic speci�cation is the fetch-execute cycle that the

processor follows when executing machine instructions. The standard cycle

is the following:

1. Fetch the instruction from memory at the location pointed to by the

PC register,

2. Increment PC by the size of the instruction fetched,

3. Decode the fetched instruction, and

15

4. Execute the instruction.

The cycle is repeated until the running process terminates.

Architectures such as SPARC have slightly modi�ed the fetch-execute

cycle by introducing another register to keep track of targets of delayed

instructions. In their case, the PC points to the next instruction to be

executed, and the nPC points to the next PC value; i.e. the instruction

after the next one. Once an instruction is fetched, the PC takes the value of

the nPC, and the nPC is incremented by the size of the instruction fetched.

It is implicit in our speci�cations that the relevant registers (PC or PC

and nPC) are updated after the instruction is fetched (i.e. decoded by the

NJMC toolkit). The \execution" or semantic representation of transfers

of control instructions will update the PC (and nPC) registers as required,

hence providing the equivalent information to that of the fetch-execute cycle.

However, as will be noted in Section 7, this is not always a good speci�cation

decision as it will make analysis (for binary translation) harder. One should

be able to use the traditional fetch-execute cycle and remove any other

architectural issues.

6.2 Examples of 80286 and SPARC Speci�cations

The arithmetic and logical instruction table is shown in Figure 7 as an ex-

ample of an 80286 group of instructions speci�ed in SSL. [ARITHLOG,OP1]

is a table containing pairs of arithmetic and logical instruction, and their

operators. Due to the large number of addressing modes in x86, each in-

struction in this group takes 9 di�erent forms depending on the arguments

to the instruction, and these forms are di�erenciated by decorating the name

of the table in each case. Each instruction consists of an assignment, which

is either of 8 or 16 bits in size, and assigns the result of the expression onto

the destination register (which in several instances is an implicit register

as described in the architecture manual). The second statement for each

instruction is a defineflags macro statement which describes transfers of

information to condition codes.

The use of tables for instructions, operators, and expressions greatly

decrease the size of the speci�cation, at a small expense on readability of the

speci�cation. The use of
ag macros enhances the speci�cation by increasing

its readability, and abstracting from the nitty-gritty details of
ag transfers.

An example of tables and membership expressions is shown in Figure

8. The table [LOG,OP1] contains logical assembly instructions and their

operators. The �rst 6 instruction assign a value to a register. The last 6

16

[ARITLOG,OP1] := { (ADD_, "+"), (AND_, "&"), (OR_, "|"),

(SUB_, "-"), (XOR_, "^") }

ARITLOG[idx]^"iAL" i8 *8* %AL := '%AL OP1[idx] i8

defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]^"iAX" i16 *16* %AX := '%AX OP1[idx] i16

defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]^"mrb" eaddr, reg8 *8* eaddr := 'eaddr OP1[idx] 'reg8

defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]^"mrw" eaddr, reg *16* eaddr := 'eaddr OP1[idx] 'reg

defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]^"rmb" reg8, eaddr *8* reg8 := 'reg8 OP1[idx] 'eaddr

defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]^"rmw" reg, eaddr *16* reg := 'reg OP1[idx] 'eaddr

defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]^"wb" eaddr, i8 *8* eaddr := 'eaddr OP1[idx] i8

defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]^"b" eaddr, i8 *8* eaddr := 'eaddr OP1[idx] i8

defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

ARITLOG[idx]^"w" eaddr, i16 *16* eaddr := 'eaddr OP1[idx] i16

defineflags(%SF,%ZF,%AF,%PF,%CF,%OF)

Figure 7: SSL de�nition of the arithmetic and logical instruction from the

80286 architecture

instruction do that and also a�ect the condition codes. When specifying the

semantics of the instructions in this table, the extra functionality attached to

the last 6 instructions can be speci�ed by means of a membership expression;

if the index in the table is between 6 and 11 (tables are indexed from 0),

the instruction a�ects the condition codes as per speci�ed.

logical table

[LOG,OP1] := { (AND,"&"), (ANDN,"&~"), (OR,"|"),

(ORN,"|~"), (XOR,"^"), (XNOR,"^~"),

(ANDCC,"&"), (ANDNCC,"&~"), (ORCC,"|"),

(ORNCC,"|~"), (XORCC,"^"), (XNORCC,"^~"),

LOG[idx] rs1, reg_or_imm, rd *32* r[rd] := 'r[rs1] OP1[idx] 'reg_or_imm

(idx |= {6..11}) =>

defineflags(%N, %Z, %V, %C)

Figure 8: SSL Speci�cation for Rotates in the 80286

17

6.3 Modelling Higher Order Instructions

The semantic description of most assembly instructions is straight forward

as most instructions are self-contained; that is, they refer to only arguments

that come within the instruction itself. However, there are a few instruc-

tions which relate to other instructions, typically the next instruction in

the instruction stream. These instructions are referred to as higher order

instructions and deserve further explanation as to their semantic speci�ca-

tion.

Delayed Instructions

On SPARC, delayed instructions take the form of a pair of instructions;

the �rst one is a control transfer instruction and the second one (commonly

referred to as the delay slot instruction) can be any type of instruction

(although normally it is not another control transfer instruction). These

instructions are used whenever transfering control to another memory lo-

cation in the program, as the next instruction in the stream can actually

be executed prior to the transfer of control by the �rst instruction. This is

possible due to the architecture's pipeline.

Branch instructions have a further constraint|the delay slot instruc-

tion can be annulled or not depending on the value of the `a' �eld in the

instruction. A machine-dependent speci�cation of the branches on SPARC

follows:

Jump table

[JUMPS,COND] :=

{ (BA_, 1), (BN_,0), (BNE_, ~'%Z), (BE_, '%Z),

(BG_, ~('%Z |('%N ^ '%V))), (BLE_, '%Z |('%N^'%V)),

(BGE_, ~('%N ^ '%V)), (BL_, '%N ^ '%V),

(BGU_, ~('%C | '%Z)), (BLEU_, '%C | '%Z),

(BCC_, ~'%C), (BCS_, '%C), (BPOS_, ~'%N),

(BNEG_, '%N), (BVC_, ~'%V), (BVS_, '%V) }

JUMPS[idx] disp22, a *32* %nPC := ((COND[idx] = 1) ? '%PC + (4 * disp22) :

((a = 1) ? '%PC + 4 : '%nPC))

32 %PC := ((COND[idx] = 0 and ('a = 1)) ?

'%PC + 4 : '%PC)

Repeat String Instructions

On x86, the repeat instructions allow the next instruction in the stream

to be repeated the number of times speci�ed in the cx register based on

an implicit condition in the repeat instruction itself. The next instruction

18

in the stream must be a string instruction (i.e. one of cmps, lods, movs,

scas, or stos, in either byte or word mode). The REP, REPNE and REPNZ

instructions execute the next instruction in the stream while the value of

the cx register is not zero; each iteration decreases the value of the register

by one. This instruction could have been modelled with a loop construct in

the language, however, we felt that SSL should not include loops as this will

most likely be misused by writers of semantic speci�cations. Hence it was

modelled with the equivalent of two global
ags: Skip and Rpt (for skip and

repeat).

The Rpt
ag is set to 1 while the value of cx is greater than 0, and it

is reset to 0 when the register becomes 0. This
ag is used by the string

instructions to update the value of the PC register prior to termination of

the instruction, namely, by \going back" one instruction (to the repeat in-

struction) if the value of the
ag was on. The Skip
ag is then needed to

\skip over" the string instruction in the last iteration. The SSL speci�cation

follows:

REPT table for repeat instrs with condition 'cx > 0'

REPT := { REP_, REPNE_, REPNZ_ }

REP uses Skip and Rpt registers to enable iteration

REPT[idx] ('%CX = 0) =>

(*1* %Skip := 1

1 %Rpt := 0)

('%CX > 0) =>

(*16* %CX := '%CX - 1

1 %Rpt := 1)

STRS table for string instructions

STRS = { CMPS, LODS, MOVS, SCAS, STOS }

STRS[idx]b ... // other stuff here

16 %PC := '%PC + ('%Rpt ? -1 : 0)

7 Discussion

The speci�cation of machine instructions using Object-Z was useful to learn

about the instruction set supported by each machine. It provided an un-

ambiguous way of specifying what each instruction was doing, and allowed

the simpli�cation of some of the machine dependencies available in ISP and

natural language descriptions in the manual (such as memory alignment for

example). It also forced us to really understand the architecture manual

descriptions as you cannot specify something that you do not understand.

19

Given the ambiguity of natural language, extra knowledge was acquired

through local architecture experts and reviewing other books. The speci�-

cations are long as they were done on an instruction at a time basis, hence

they are 27 and 15 pages long for SPARC and 80286 respectively.

The re�nement of the Object-Z speci�cations to the SSL language al-

lowed for the compacting of the speci�cations by grouping common instruc-

tions into tables. The language was extensively revised for readability and

expressability, and only simple constructs were allowed in the language. The

SSL �les for SPARC and 80286 are 210 and 382 lines long respectively (com-

mented �les).

We have implemented a semantic representation decoder tool (SRD) to

parse SSL �les and store them in a template format suitable for instantiation

by individual machine instructions in a binary-code decoder tool.

The speci�cations as they stand are machine-dependent, in that they

model architectural issues such as register windows and the nPC register

on SPARC. For retargetable binary translation analysis, this representation

will be transformed into a machine independent representation in order to

perform analyses in a machine independent way. However, some of the

initial analyses require the machine-dependent representation (for example,

to determine the arguments to a call and the calling convention used), so

both representations will be needed.

Higher order instructions require a semantic representation that is inde-

pendent of the machine. For example, both the speci�cations of delay in-

structions and repeat instructions require \forced" changes of the program

counter register, which is not normally user-controlled in machine programs.

If binary translating from SPARC to x86, the nPC register is not available

in the destination machine, and although it can be modelled by a dedicated

register, the changes to the contents of the PC register with that of the nPC

register would involve nasty code to get around the fact that the PC register

cannot be assigned to directly other than via control transfer instructions.

Allowing for this type of code would create a big overhead on execution time

of the translated program.

8 Conclusions

We have speci�ed the semantics of machine instructions for a RISC and a

CISC processor using a formal description language, Object-Z, and derived

from it a speci�cation language called SSL for the description of semantics

of machine instructions for a variety of machines.

20

SSL provides a simple language for specifying the semantics of machine

instructions in a compact way. SRD, a semantic representation decoder tool

implements SSL and provides an interface to users of this language to the

NJMC toolkit via a template �le. SRD provides an interface to this template

�le in order to get an instance of an instruction's description. This tool is

suitable for decoding the semantics of instructions once the syntax has been

decoded, and it fully integrates with the NJMC toolkit (a syntax decoder).

SSL has been integrated in a retargetable binary translation environment

which aims at translating binary code from one machine to another via

speci�cation languages which specify the machine-dependent aspects of the

translation process. In this way, machine-independent analyses will need to

be written once and used in any number of machines. The current interface

for SSL is written in the C++ language.

Acknowledgements

We would like to thank the members of the binary translation group, Mike

van Emmerik, David Ung and Doug Simon, for useful discussions on the

SSL language. We also thank Norman Ramsey for email discussions on

the speci�cation of machine instructions; he is specifying the semantics of

machine instructions for a retargetable optimizing compiler using a pure

functional language called �-RTL [8].

References

[1] E.J. Chikofsky and J.H. Cross. Reverse engineering and design recovery:

A taxonomy. IEEE Software, 7:13{17, January 1990.

[2] C. Cifuentes, S. Sendall, M. van Emmerik, D. Ung, D. Simon, and

N. Ramsey. The UQ retargetable binary translator. Internal report,

Binary translation group, Deparment of Computer Science, The Uni-

versity of Queensland, 1997.

[3] Digital. Freeport express. http://www.novalink.com/ freeport-express,

1995.

[4] R. Duke and G. Rose. Formal object-oriented speci�cation and design

using Object-Z. Book to be published, 1997.

[5] R.J. Hookway and M.A. Herdeg. Digital FX!32: Combining emulation

and binary translation. Digital Technical Journal, 9(1):3{12, 1997.

21

[6] Intel. Pentium Processor Family Developer's Manual { Volume 3: Ar-

chitecture and Programming Manual. Intel Corporation, 1995.

[7] J.R. Larus and E. Schnarr. EEL: Machine-independent executable edit-

ing. In SIGPLAN Conference on Programming Languages, Design and

Implementation, pages 291{300, June 1995.

[8] N. Ramsey and J.W. Davidson. Specifying instructions' semantics using

CSDL (preliminary report). Technical Report CS-97-31, University of

Virginia, Department of Computer Science, Charlotesville, VA, Novem-

ber 1997.

[9] N. Ramsey and M. Fern�andez. The New Jersey machine-code toolkit. In

Proceedings of the 1995 USENIX Technical Conference, pages 289{302,

January 1995.

[10] N. Ramsey and M. Fern�andez. Specifying representations of machine

instructions. ACM Transactions of Programming Languages and Sys-

tems, 19(3):492{524, 1997.

[11] S. Sendall. Semantics of machine instructions. Honours thesis, Univer-

sity of Queensland, Department of Computer Science, 1997.

[12] Sparc. The SPARC Architecture Manual { Version 8. Sparc Interna-

tional, Menlo Park, California, 1992.

[13] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2

edition, 1992.

[14] T. Thompson. An Alpha in PC clothing. Byte, pages 195{196, February

1996.

22

